Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
ACS Nano ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722840

RESUMEN

Direct photosynthesis of hydrogen peroxide (H2O2) from water and oxygen represents an intriguing alternative to the current indirect process involving the reduction and oxidation of quinones. However, limited light utilization and sluggish charge transfer largely impede overall photocatalytic efficiency. Herein, we present a heavily doped carbon nitride (CNKLi) nanocrystal for efficient and selective photoproduction of H2O2 via a two-electron oxygen reduction reaction (ORR) pathway. CNKLi induces metal-to-ligand charge transfer (MLCT) and electron trapping, which broadens the light absorption to the visible-near-infrared (vis-NIR) spectrum and prolongs the photoelectron lifetime to the microsecond time scale with an exceptional charge diffusion length of ∼1200 nm. Near-unit photoutilization with an apparent quantum yield (AQY) of 100% for H2O2 generation is achieved below 420 nm. Impressively, CNKLi exhibits an appreciable AQY of 16% at 700 nm, which reaches the absorption capacity (∼16%), thus suggesting a near-unit photon utilization <700 nm. In situ characterization and theoretical calculations reveal the facilitated charge transfer from K+ to the heptazine ring skeleton. These findings provide an approach to improve the photosynthetic efficiency of direct H2O2 preparation in the vis-NIR region and expand applications for driving kinetically slow and technologically desirable oxidations or high-value chemical generation.

2.
ChemSusChem ; : e202400472, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705869

RESUMEN

Hydrogen peroxide (H2O2) has been considered an energy carrier (fuel) and oxidizer for various chemical synthesis and environmental remediation processes. Biomass valorization can generate high-value-added products in a green and pollution-free way to solve the energy and environmental crisis. The biomass valorization coupled with H2O2 generation via photo-, electro-, and photoelectrocatalysis plays a positive role in sustainable targets, which can maximize energy utilization and realize the production of value-added products and fuel synthesis. Recently, catalyst design and mechanism studies in H2O2 generation coupled with biomass valorization are in the infancy stage. Herein, this review begins with a background on photo-, electro-, and photoelectrocatalytic techniques for H2O2 generation, biomass valorization, and the H2O2 generation couples with biomass valorization. Meanwhile, the progress and reaction mechanism are reviewed. Finally, the prospects and challenges of a synergistic coupled system of H2O2 synthesis and value-added biomass in achieving high conversion, selectivity, and reaction efficiency are envisioned.

3.
Angew Chem Int Ed Engl ; : e202320014, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598078

RESUMEN

Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the sustainable production of amino acids from biomass-derived hydroxy acids with high activity under visible-light irradiation and mild conditions, using atomic ruthenium-promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla·gRu­1·h­1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O-H bond dissociation of the a-hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique "double activation" mechanism of both the CH-OH and CH3-CH-OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine.

4.
Nano Lett ; 23(23): 11314-11322, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38018816

RESUMEN

The electrochemical 5-hydroxymethylfurfural oxidation reaction (HMFOR) has been regarded as a viable alternative to sustainable biomass valorization. However, the transformation of the catalysts under harsh electrooxidation conditions remains controversial. Herein, we confirm the self-construction of cuprous sulfide nanosheets (Cu2S NSs) into sulfate-terminated copper oxide nanorods (CuO-SO42- NRs) during the first-cycle of the HMFOR, which achieves a near-quantitative synthesis of 2,5-furandicarboxylic acid (FDCA) with a >99.9% yield and faradaic efficiency without deactivation in 15 successive cycles. Electrochemical impedance spectroscopies confirm that the surface SO42- effectively reduces the onset potential for HMFOR, while in situ Raman spectroscopies identify a reversible transformation from CuII-O to CuIII-OOH in HMFOR. Furthermore, density functional theory calculations reveal that the surface SO42- weakens the Cu-OH bonds in CuOOH to promote the rate-determining step of its coupling with the C atom in HMF-H* resulting from HMF hydrogenation, which synergistically enhances the catalytic activity of CuO-SO42- NRs toward HMF-to-FDCA conversion.

6.
Angew Chem Int Ed Engl ; 62(43): e202311913, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37681485

RESUMEN

The development of methods for selective cleavage reactions of thermodynamically stable C-C/C=C bonds in a green manner is a challenging research field which is largely unexplored. Herein, we present a heterogeneous Fe-N-C catalyst with highly dispersed iron centers that allows for the oxidative C-C/C=C bond cleavage of amines, secondary alcohols, ketones, and olefins in the presence of air (O2 ) and water (H2 O). Mechanistic studies reveal the presence of water to be essential for the performance of the Fe-N-C system, boosting the product yield from <1 % to >90 %. Combined spectroscopic characterizations and control experiments suggest the singlet 1 O2 and hydroxide species generated from O2 and H2 O, respectively, take selectively part in the C-C bond cleavage. The broad applicability (>40 examples) even for complex drugs as well as high activity, selectivity, and durability under comparably mild conditions highlight this unique catalytic system.

7.
Dalton Trans ; 52(33): 11571-11580, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37547989

RESUMEN

Bimetallic interstitial compounds with unique geometric properties have attracted increasing attention in energy-related fields and diverse chemical transformations. Current synthesis of these compounds generally involves at least one wet-chemistry step with the use of various solvents to prepare the bimetallic precursors, and no universal protocols for different compositions are yet available. Herein, a novel synthetic strategy toward a platform of nickel-based bimetallic interstitial compounds with the formula MNi3Cx, M = Zn, In, and Ga, was developed based on a straightforward solid-state transformation, i.e., simply annealing the hydroxides of the respective metals in the presence of different carbon precursors (cyanamide, dicyandiamide, melamine, and urea) in a hydrogen stream. The key process parameters influencing the compositions of the final products are studied and the formation mechanism is discussed based on advanced characterization techniques. Powder X-ray diffraction reveals MNi3Cx as a single phase and electron microscopy shows that the MNi3Cx particles are covered with N-doped carbon shells. Extrapolation to other bimetallic interstitial compounds failed when following the above protocol, and the successful examples are linked to the formation of the corresponding bimetallic alloys in the absence of carbon precursors. When evaluated for the selective hydrogenation of dimethyl oxalate, both InNi3C0.5 and ZnNi3C0.7 show comparable high activity. While ZnNi3C0.7 delivers the highest selectivity for methyl glycolate, tunable methyl glycolate and ethylene glycol are formed on InNi3C0.5. In general, this facile solvent-free strategy affords an interesting scaffold to fabricate more advanced multi-metallic interstitial compounds with broad applications.

8.
Nat Commun ; 14(1): 4996, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591869

RESUMEN

Dopamine is not only a widely used commodity pharmaceutical for treating neurological diseases but also a highly attractive base for advanced carbon materials. Lignin, the waste from the lignocellulosic biomass industry, is the richest source of renewable aromatics on earth. Efficient production of dopamine direct from lignin is a highly desirable target but extremely challenging. Here, we report an innovative strategy for the sustainable production of dopamine hydrochloride from softwood lignin with a mass yield of 6.4 wt.%. Significantly, the solid dopamine hydrochloride is obtained by a simple filtration process in purity of 98.0%, which avoids the tedious separation and purification steps. The approach begins with the acid-catalyzed depolymerization, followed by deprotection, hydrogen-borrowing amination, and hydrolysis of methoxy group, transforming lignin into dopamine hydrochloride. The technical economic analysis predicts that this process is an economically competitive production process. This study fulfills the unexplored potential of dopamine hydrochloride synthesis from lignin.


Asunto(s)
Dopamina , Lignina , Aminación , Biomasa , Carbono
9.
ACS Nano ; 17(12): 11869-11881, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37289089

RESUMEN

Photocatalytic reduction of CO2 to value-added solar fuels is of great significance to alleviate the severe environmental and energy crisis. Herein, we report the construction of a synergistic silver nanoparticle catalyst with adjacent atomic cobalt-silver dual-metal sites on P-doped carbon nitride (Co1Ag(1+n)-PCN) for photocatalytic CO2 reduction. The optimized photocatalyst achieves a high CO formation rate of 46.82 µmol gcat-1 with 70.1% selectivity in solid-liquid mode without sacrificial agents, which is 2.68 and 2.18-fold compared to that of exclusive silver single-atom (Ag1-CN) and cobalt-silver dual-metal site (Co1Ag1-PCN) photocatalysts, respectively. The closely integrated in situ experiments and density functional theory calculations unravel that the electronic metal-support interactions (EMSIs) of Ag nanoparticles with adjacent Ag-N2C2 and Co-N6-P single-atom sites promote the adsorption of CO2* and COOH* intermediates to form CO and CH4, as well as boost the enrichment and transfer of photoexcited electrons. Moreover, the atomically dispersed dual-metal Co-Ag SA sites serve as the fast-electron-transfer channel while Ag nanoparticles act as the electron acceptor to enrich and separate more photogenerated electrons. This work provides a general platform to delicately design high-performance synergistic catalysts for highly efficient solar energy conversion.

10.
Org Biomol Chem ; 21(20): 4276-4281, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37144980

RESUMEN

An easy to prepare nickel-coordinated mesoporous graphitic carbon nitride (Ni-mpg-CN) was introduced as a heterogeneous photocatalyst, which efficiently accelerated the photocatalytic C-N cross-coupling of (hetero)aryl bromides and aliphatic amines, delivering the desired monoaminated products in good yields. In addition, the concise synthesis of the pharmaceutical tetracaine was accomplished in the final stage, further highlighting the practical applicability.

11.
Angew Chem Int Ed Engl ; 62(23): e202219241, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017231

RESUMEN

Metal-organic framework catalysts bring new opportunities for CO2 electrocatalysis. Herein, we first conduct density-functional theory calculations and predict that Co-based porphyrin porous organic layers (Co-PPOLs) exhibit good activity for CO2 conversion because of the low *CO adsorption energy at Co-N4 sites, which facilitates *CO desorption and CO formation. Then, we prepare two-dimensional Co-PPOLs with exclusive Co-N4 sites through a facile surfactant-assisted bottom-up method. The ultrathin feature ensures the exposure of catalytic centers. Together with large specific area, high electrical conductivity and CO2 adsorption capability, Co-PPOLs achieve a peak faradaic efficiency for CO production (FECO =94.2 %) at a moderate potential in CO2 electroreduction, accompanied with good stability. Moreover, Co-PPOLs reach an industrial-level current above 200 mA in a membrane electrode assembly reactor, and maintain near-unity CO selectivity (FECO >90 %) over 20 h in CO2 electrolysis.

12.
Front Genet ; 14: 1027690, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777735

RESUMEN

Objective: To investigate the prognostic value of arachidonate lipoxygenases 5 (ALOX5) expression and methylation, and explore the immune functions of arachidonate lipoxygenases 5 expression in low-grade glioma (LGG). Materials and Methods: Using efficient bioinformatics approaches, the differential expression of arachidonate lipoxygenases 5 and the association of its expression with clinicopathological characteristics were evaluated. Then, we analyzed the prognostic significance of arachidonate lipoxygenases 5 expression and its methylation level followed by immune cell infiltration analysis. The functional enrichment analysis was conducted to determine the possible regulatory pathways of arachidonate lipoxygenases 5 in low-grade glioma. Finally, the drug sensitivity analysis was performed to explore the correlation between arachidonate lipoxygenases 5 expression and chemotherapeutic drugs. Results: arachidonate lipoxygenases 5 mRNA expression was increased in low-grade glioma and its expression had a notable relation with age and subtype (p < 0.05). The elevated mRNA level of arachidonate lipoxygenases 5 could independently predict the disease-specific survival (DSS), overall survival (OS), and progression-free interval (PFI) (p < 0.05). Besides, arachidonate lipoxygenases 5 expression was negatively correlated with its methylation level and the arachidonate lipoxygenases 5 hypomethylation led to a worse prognosis (p < 0.05). The arachidonate lipoxygenases 5 expression also showed a positive connection with immune cells, while low-grade glioma patients with higher immune cell infiltration had poor survival probability (p < 0.05). Further, arachidonate lipoxygenases 5 might be involved in immune- and inflammation-related pathways. Importantly, arachidonate lipoxygenases 5 expression was negatively related to drug sensitivity. Conclusion: arachidonate lipoxygenases 5 might be a promising biomarker, and it probably occupies a vital role in immune cell infiltration in low-grade glioma.

13.
Exploration (Beijing) ; 3(6): 20220169, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38264688

RESUMEN

Biomass with abundant reproducible carbon resource holds great promise as an intriguing substitute for fossil fuels in the manufacture of high-value-added chemicals and fuels. Photocatalytic biomass valorization using inexhaustible solar energy enables to accurately break desired chemical bonds or selectively functionalize particular groups, thus emerging as an extremely creative and low carbon cost strategy for relieving the dilemma of the global energy. Quantum dots (QDs) are an outstandingly dynamic class of semiconductor photocatalysts because of their unique properties, which have achieved significant successes in various photocatalytic applications including biomass valorization. In this review, the current development rational design for QDs photocatalytic biomass valorization effectively is highlighted, focusing on the principles of tuning their particle size, structure, and surface properties, with special emphasis on the effect of the ligands for selectively broken chemical bonds (C─O, C─C) of biomass. Finally, the present issues and possibilities within that exciting field are described.

14.
Angew Chem Int Ed Engl ; 61(40): e202207410, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35969114

RESUMEN

Solar-driven transfer hydrogenation of unsaturated bonds has received considerable attention in the research area of sustainable organic synthesis; however, water, the ultimate green source of hydrogen, has rarely been investigated due to the high barrier associated with splitting of water molecules. We report a carbon-nitride-supported palladium single-atom heterogeneous catalyst with unparalleled performance in photocatalytic water-donating transfer hydrogenation compared to its nanoparticle counterparts. Isotopic-labeling experiments and operando nuclear magnetic resonance measurements confirm the direct hydrogenation mechanism using in situ-generated protons from water splitting under visible-light irradiation. Density functional theory calculations attribute the high activity to lower barriers for hydrogenation, facilitated desorption of ethylbenzene, and facile hydrogen replenishment from water on the atomic palladium sites.

15.
Adv Sci (Weinh) ; 9(24): e2201520, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35808964

RESUMEN

Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.

16.
Nanoscale ; 14(29): 10506-10513, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35830255

RESUMEN

Tuning the coordination neighbors of the metal center is emerging as an elegant approach to manipulating the performance of supported single-atom catalysts in heterogeneous catalysis. Herein, atomically dispersed Pt species with different coordination neighbors hosted on nitrogen-doped carbon (NC) and graphitic carbon nitride (C3N4) are constructed through an impregnation-activation approach. Advanced characterization techniques including X-ray electron microscopy, X-ray absorption spectroscopy, and high angle annular dark-field scanning transmission electron microscopy reveal the different nature of active sites induced by the hosts: i.e., the Pt-Nx configuration in NC but both Pt-N and Pt-O coordinations in C3N4. H2-D2 exchange experiments and electron microscopy further evidence that Pt/NC exhibits a high propensity for H2 splitting and high thermal stability of the Pt species against agglomeration, whereas Pt/C3N4 cannot dissociate H2 and the Pt atoms easily aggregate in the reductive stream. Consequently, when applied in the selective hydrogenation of 1,3-butadiene, Pt/NC exhibits higher selectivity to butenes and excellent stability, but Pt/C3N4 behaves as a nanoparticle analogue favoring deep hydrogenation. The superior selectivity patterns of the single Pt atoms over Pt nanoparticles are rationalized by the inversed adsorption strength between the H2 and 1,3-butadiene molecules at different metal sites, which is substantiated by the kinetic studies.

17.
Small ; 18(33): e2202080, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35678101

RESUMEN

The ability to tailor the properties of metal centers in single-atom heterogeneous catalysts depends on the availability of advanced approaches for characterization of their structure. Except for specific host materials with well-defined metal adsorption sites, determining the local atomic environment remains a crucial challenge, often relying heavily on simulations. This article reports an advanced analysis of platinum atoms stabilized on poly(triazine imide), a nanocrystalline form of carbon nitride. The approach discriminates the distribution of surface coordination sites in the host, the evolution of metal coordination at different stages during the synthesis of the material, and the potential locations of metal atoms within the lattice. Consistent with density functional theory predictions, simultaneous high-resolution imaging in high-angle annular dark field and bright field modes experimentally confirms the preferred localization of platinum in-plane in the corners of the triangular cavities. X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and dynamic nuclear polarization enhanced 15 N nuclear magnetic resonance (DNP-NMR) spectroscopies coupled with density functional theory (DFT) simulations reveal that the predominant metal species comprise Pt(II) bound to three nitrogen atoms and one chlorine atom inside the coordination sites. The findings, which narrow the gap between experimental and theoretical elucidation, contribute to the improved structural understanding and provide a benchmark for exploring the speciation of single-atom catalysts based on carbon nitrides.

18.
Adv Sci (Weinh) ; 9(9): e2105204, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35072349

RESUMEN

The chemical transformation of carbon dioxide (CO2 ) has been considered as a promising strategy to utilize and further upgrade it to value-added chemicals, aiming at alleviating global warming. In this regard, sustainable driving forces (i.e., electricity and sunlight) have been introduced to convert CO2 into various chemical feedstocks. Electrocatalytic CO2 reduction reaction (CO2 RR) can generate carbonaceous molecules (e.g., formate, CO, hydrocarbons, and alcohols) via multiple-electron transfer. With the assistance of extra light energy, photoelectrocatalysis effectively improve the kinetics of CO2 conversion, which not only decreases the overpotentials for CO2 RR but also enhances the lifespan of photo-induced carriers for the consecutive catalytic process. Recently, rational-designed catalysts and advanced characterization techniques have emerged in these fields, which make CO2 -to-chemicals conversion in a clean and highly-efficient manner. Herein, this review timely and thoroughly discusses the recent advancements in the practical conversion of CO2 through electro- and photoelectrocatalytic technologies in the past 5 years. Furthermore, the recent studies of operando analysis and theoretical calculations are highlighted to gain systematic insights into CO2 RR. Finally, the challenges and perspectives in the fields of CO2 (photo)electrocatalysis are outlined for their further development.

19.
J Hazard Mater ; 423(Pt B): 127128, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34534804

RESUMEN

Effectively harnessing renewable and inexhaustible solar radiation for energy conversion has attracted significant research interest in the past decade. Solar thermal conversion, as a ubiquitous phenomenon, can be implemented to evaporate water and concurrently boost photocatalytic performance for addressing freshwater scarcity and energy crisis. Most recently, solar water evaporation accompanied by photocatalytic degradation, sterilization, and hydrogen production has been proposed as a promising avenue to endow new vitality into the field of clean water and energy production. Driven by the advances of rationally designed solar-powered functional materials, a large variety of photothermal-coupled photocatalysis technologies have been exploited. In this context, it is imperative to summarize the recent progress and discuss the challenges in this multidisciplinary field. Herein, we overview photothermal materials based on various fundamental principles and highlight emerging applications in the areas of solar water evaporation, water purification, and solar-driven energy production. Furthermore, the challenges and perspectives toward both fundamental research and practical applications are also proposed. It is envisioned that this review can provide insightful suggestions to further advance the development of integrated solar thermal driven water evaporation and photocatalytic systems to fulfill concurrent energy conversion and environmental applications.


Asunto(s)
Energía Solar , Purificación del Agua , Agua Dulce , Luz Solar
20.
Mol Med Rep ; 22(6): 4541-4550, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33174039

RESUMEN

Ruptured intracranial aneurysm (IA)­induced subarachnoid hemorrhage (SAH) triggers a series of immune responses and inflammation in the brain and body. The present study was conducted to identify additional circulating biomarkers that may serve as potential therapeutic targets for SAH­induced inflammation. Differentially expressed (DE) long non­coding RNAs (lncRNAs; DElncRNAs) and genes (DEGs) in the peripheral blood mononuclear cells between patients with IA rupture­induced SAH and healthy controls were identified in the GSE36791 dataset. DEGs were used for weighted gene co­expression network analysis (WGCNA), and SAH­associated WGCNA modules were identified. Subsequently, an lncRNA­mRNA regulatory network was constructed using the DEGs in SAH­associated WGCNA modules. A total of 25 DElncRNAs and 1,979 DEGs were screened from patients with IA­induced SAH in the GSE36791 dataset compared with the controls. A total of 11 WGCNA modules, including four upregulated modules significantly associated with IA rupture­induced SAH were obtained. The DEGs in the SAH­associated modules were associated with Gene Ontology biological processes such as 'regulation of programmed cell death', 'apoptosis' and 'immune response'. The subsequent lncRNA­mRNA regulatory network included seven upregulated lncRNAs [HCG27, ZNFX1 antisense RNA 1, long intergenic non­protein coding RNA (LINC)00265, murine retrovirus integration site 1 homolog­antisense RNA 1, cytochrome P450 1B1­AS1, LINC01347 and LINC02193] and 375 DEGs. Functional enrichment analysis and screening in the Comparative Toxicogenomics Database demonstrated that SAH­associated DEGs, including neutrophil cytosolic factor (NCF)2 and NCF4, were enriched in 'chemokine signaling pathway' (hsa04062), 'leukocyte transendothelial migration' (hsa04670) and 'Fc gamma R­mediated phagocytosis' (hsa04666). The upregulated lncRNAs and genes, including NCF2 and NCF4, in patients with IA rupture­induced SAH indicated their respective potentials as anti­inflammatory therapeutic targets.


Asunto(s)
Aneurisma Intracraneal/genética , ARN Largo no Codificante/genética , Hemorragia Subaracnoidea/genética , Adulto , Biomarcadores , Ácidos Nucleicos Libres de Células/genética , Bases de Datos Genéticas , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Ontología de Genes , Redes Reguladoras de Genes/genética , Humanos , Inflamación/genética , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...